
Finding High-Quality Local Minima in
Derivative-Free Optimization

Jeffrey Larson Stefan Wild

Argonne National Laboratory

October 20, 2015

Motivation

I We want to identify distinct, “high-quality”, local minimizers of

minimize f (x)

l ≤ x ≤ u

x ∈ Rn

I High-quality can be measured by more than the objective.

I Derivatives of f may or may not be available.

I The simulation f is likely using parallel resources, but it does not
utilize the entire machine.

2 of 26.

Motivation

I We want to identify distinct, “high-quality”, local minimizers of

minimize f (x)

l ≤ x ≤ u

x ∈ Rn

I High-quality can be measured by more than the objective.

I Derivatives of f may or may not be available.

I The simulation f is likely using parallel resources, but it does not
utilize the entire machine.

2 of 26.

Motivation

I We want to identify distinct, “high-quality”, local minimizers of

minimize f (x)

l ≤ x ≤ u

x ∈ Rn

I High-quality can be measured by more than the objective.

I Derivatives of f may or may not be available.

I The simulation f is likely using parallel resources, but it does not
utilize the entire machine.

2 of 26.

Why concurrency? Tiled QR example

FlatTree(TS)
PlasmaTree(TS) (best)
FlatTree(TT)
PlasmaTree(TT) (best)
Fibonacci(TT)
Greedy

P
re
d
ic
te
d
G
F
L
O
P
/s

q

1 2 3 4 5 6 7 8 9 10 20 30 40

20

40

60

80

100

120

140

160

[Bouwmeester, et al., Tiled QR Factorization Algorithms, 2011]

3 of 26.

Global optimization is difficult

Theorem (Törn and Žilinskas, Global Optimization, 1989)

An algorithm converges to the global minimum of any continuous f on
a domain D if and only if the algorithm generates iterates that are
dense in D.

I Either assume additional properties about the problem
I convex f
I separable f
I finite domain D

I concurrent evaluations of f

I Or possibly wait a long time (or forever)

The theory can be more than merely checking that a method generates
iterates which are dense in the domain.

An algorithm must trade-off between “refinement” and “exploration”.

4 of 26.

Global optimization is difficult

Theorem (Törn and Žilinskas, Global Optimization, 1989)

An algorithm converges to the global minimum of any continuous f on
a domain D if and only if the algorithm generates iterates that are
dense in D.

I Either assume additional properties about the problem
I convex f
I separable f
I finite domain D

I concurrent evaluations of f

I Or possibly wait a long time (or forever)

The theory can be more than merely checking that a method generates
iterates which are dense in the domain.

An algorithm must trade-off between “refinement” and “exploration”.

4 of 26.

Global optimization is difficult

Theorem (Törn and Žilinskas, Global Optimization, 1989)

An algorithm converges to the global minimum of any continuous f on
a domain D if and only if the algorithm generates iterates that are
dense in D.

I Either assume additional properties about the problem
I convex f
I separable f
I finite domain D

I concurrent evaluations of f

I Or possibly wait a long time (or forever)

The theory can be more than merely checking that a method generates
iterates which are dense in the domain.

An algorithm must trade-off between “refinement” and “exploration”.

4 of 26.

Global optimization is difficult

Theorem (Törn and Žilinskas, Global Optimization, 1989)

An algorithm converges to the global minimum of any continuous f on
a domain D if and only if the algorithm generates iterates that are
dense in D.

I Either assume additional properties about the problem
I convex f
I separable f
I finite domain D
I concurrent evaluations of f

I Or possibly wait a long time (or forever)

The theory can be more than merely checking that a method generates
iterates which are dense in the domain.

An algorithm must trade-off between “refinement” and “exploration”.

4 of 26.

Global optimization is difficult

Theorem (Törn and Žilinskas, Global Optimization, 1989)

An algorithm converges to the global minimum of any continuous f on
a domain D if and only if the algorithm generates iterates that are
dense in D.

I Either assume additional properties about the problem
I convex f
I separable f
I finite domain D
I concurrent evaluations of f

I Or possibly wait a long time (or forever)

The theory can be more than merely checking that a method generates
iterates which are dense in the domain.

An algorithm must trade-off between “refinement” and “exploration”.

4 of 26.

Global optimization is difficult

Theorem (Törn and Žilinskas, Global Optimization, 1989)

An algorithm converges to the global minimum of any continuous f on
a domain D if and only if the algorithm generates iterates that are
dense in D.

I Either assume additional properties about the problem
I convex f
I separable f
I finite domain D
I concurrent evaluations of f

I Or possibly wait a long time (or forever)

The theory can be more than merely checking that a method generates
iterates which are dense in the domain.

An algorithm must trade-off between “refinement” and “exploration”.

4 of 26.

DIRECT

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 0; r_k: Inf

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

5 of 26.

DIRECT

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 1; r_k: Inf

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

5 of 26.

DIRECT

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 2; r_k: Inf

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

5 of 26.

DIRECT

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 3; r_k: Inf

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

5 of 26.

DIRECT

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 4; r_k: Inf

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

5 of 26.

DIRECT

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 5; r_k: Inf

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

5 of 26.

DIRECT

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 6; r_k: Inf

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

5 of 26.

DIRECT

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 7; r_k: Inf

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

5 of 26.

DIRECT

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 8; r_k: Inf

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

5 of 26.

DIRECT

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 9; r_k: Inf

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

5 of 26.

DIRECT

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 10; r_k: Inf

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

5 of 26.

DIRECT

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 11; r_k: Inf

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

5 of 26.

DIRECT

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 12; r_k: Inf

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

5 of 26.

DIRECT

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 13; r_k: Inf

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

5 of 26.

DIRECT

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 14; r_k: Inf

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

5 of 26.

DIRECT

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 15; r_k: Inf

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

5 of 26.

DIRECT

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 16; r_k: Inf

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

5 of 26.

DIRECT

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 17; r_k: Inf

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

5 of 26.

DIRECT

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 18; r_k: Inf

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

5 of 26.

DIRECT

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 19; r_k: Inf

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

5 of 26.

DIRECT

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 20; r_k: Inf

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

5 of 26.

DIRECT

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 21; r_k: Inf

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

5 of 26.

DIRECT

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 22; r_k: Inf

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

5 of 26.

DIRECT

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 23; r_k: Inf

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

5 of 26.

DIRECT

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 24; r_k: Inf

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

5 of 26.

DIRECT

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 25; r_k: Inf

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

5 of 26.

DIRECT

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 50; r_k: Inf

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

5 of 26.

DIRECT

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 99; r_k: Inf

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

5 of 26.

DIRECT

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 199; r_k: Inf

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

5 of 26.

Multistart Methods
Given some local optimization routine L:

Algorithm 1: General Multistart

for k = 1, 2, . . . do
Evaluate f at N points drawn from D
Start L at some set (possibly empty) of previously evaluated points

I Get to use problem specific local optimization routines.
I Possibly multiple levels of parallelism (objective, local method, global

method); L may involve many sequential evaluations of f . . .

I Which points should start runs?
I If resources are limited, how should points from each run receive

priority?

I Ideally, only one run is started for each minima.
I Exploring by sampling. Refining with L.

6 of 26.

Multistart Methods
Given some local optimization routine L:

Algorithm 1: General Multistart

for k = 1, 2, . . . do
Evaluate f at N points drawn from D
Start L at some set (possibly empty) of previously evaluated points

I Get to use problem specific local optimization routines.
I Possibly multiple levels of parallelism (objective, local method, global

method); L may involve many sequential evaluations of f . . .

I Which points should start runs?
I If resources are limited, how should points from each run receive

priority?

I Ideally, only one run is started for each minima.
I Exploring by sampling. Refining with L.

6 of 26.

Multistart Methods
Given some local optimization routine L:

Algorithm 1: General Multistart

for k = 1, 2, . . . do
Evaluate f at N points drawn from D
Start L at some set (possibly empty) of previously evaluated points

I Get to use problem specific local optimization routines.
I Possibly multiple levels of parallelism (objective, local method, global

method); L may involve many sequential evaluations of f . . .

I Which points should start runs?
I If resources are limited, how should points from each run receive

priority?

I Ideally, only one run is started for each minima.
I Exploring by sampling. Refining with L.

6 of 26.

Multistart Methods
Given some local optimization routine L:

Algorithm 1: General Multistart

for k = 1, 2, . . . do
Evaluate f at N points drawn from D
Start L at some set (possibly empty) of previously evaluated points

I Get to use problem specific local optimization routines.
I Possibly multiple levels of parallelism (objective, local method, global

method); L may involve many sequential evaluations of f . . .

I Which points should start runs?
I If resources are limited, how should points from each run receive

priority?

I Ideally, only one run is started for each minima.
I Exploring by sampling. Refining with L.

6 of 26.

Multi-Level Single Linkage
Given some local optimization routine L:

Algorithm 2: MLSL

for k = 1, 2, . . . do
Sample f at N random points drawn uniformly from D
Start L at all sample points x :

I that has yet to start a run
I @xi : ‖x − xi‖ ≤ rk and f (xi) < f (x)

[Rinnooy Kan and Timmer, Mathematical Programming, 39(1):57–78, 1987]

I Doesn’t naturally translate when evaluations of f are limited

I Ignores some points when deciding where to start L

7 of 26.

Multi-Level Single Linkage
Given some local optimization routine L:

Algorithm 2: MLSL

for k = 1, 2, . . . do
Sample f at N random points drawn uniformly from D
Start L at all sample points x :

I that has yet to start a run
I @xi : ‖x − xi‖ ≤ rk and f (xi) < f (x)

[Rinnooy Kan and Timmer, Mathematical Programming, 39(1):57–78, 1987]

I Doesn’t naturally translate when evaluations of f are limited

I Ignores some points when deciding where to start L

7 of 26.

Multi-Level Single Linkage

k = 1; rk = 0.71575;

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

8 of 26.

Multi-Level Single Linkage

k = 1; rk = 0.71575;

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

8 of 26.

Multi-Level Single Linkage

k = 2; rk = 0.60537;

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

8 of 26.

Multi-Level Single Linkage

k = 3; rk = 0.53603;

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

8 of 26.

Multi-Level Single Linkage

k = 4; rk = 0.48825;

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

8 of 26.

Multi-Level Single Linkage

k = 5; rk = 0.45268;

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

8 of 26.

Multi-Level Single Linkage

k = 7; rk = 0.40208;

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

8 of 26.

Multi-Level Single Linkage

k = 18; rk = 0.28209;

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

8 of 26.

Multi-Level Single Linkage

k = 20; rk = 0.27073;

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

8 of 26.

Multi-Level Single Linkage

k = 22; rk = 0.26079;

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

8 of 26.

Multi-Level Single Linkage

I f ∈ C 1, with local minima in the interior of D, and the distance
between these minima is bounded away from zero.

I L is strictly descent and converges to a minimum (not a stationary
point).

I

rk =
1√
π

n

√
Γ
(
1 +

n
2

)
vol (D)

σ log kN
kN

(1)

Theorem
If rk → 0, all local minima will be found almost surely.

If rk is defined by (1) with σ > 4, even if the sampling continues
forever, the total number of local searches started is finite almost surely.

9 of 26.

Multi-Level Single Linkage

I f ∈ C 1, with local minima in the interior of D, and the distance
between these minima is bounded away from zero.

I L is strictly descent and converges to a minimum (not a stationary
point).

I

rk =
1√
π

n

√
Γ
(
1 +

n
2

)
vol (D)

σ log kN
kN

(1)

Theorem
If rk → 0, all local minima will be found almost surely.

If rk is defined by (1) with σ > 4, even if the sampling continues
forever, the total number of local searches started is finite almost surely.

9 of 26.

Multi-Level Single Linkage

I f ∈ C 1, with local minima in the interior of D, and the distance
between these minima is bounded away from zero.

I L is strictly descent and converges to a minimum (not a stationary
point).

I

rk =
1√
π

n

√
Γ
(
1 +

n
2

)
vol (D)

σ log kN
kN

(1)

Theorem
If rk → 0, all local minima will be found almost surely.

If rk is defined by (1) with σ > 4, even if the sampling continues
forever, the total number of local searches started is finite almost surely.

9 of 26.

POSMM
MLSL: (S2)–(S4)

POSMM: (S1)–(S4), (L1)–(L6)

x̂ ∈ Sk

(S1) @x ∈ Lk with
[‖x̂ − x‖ ≤ rk and f (x) < f (x̂)]

(S2) @x ∈ Sk with
[‖x̂ − x‖ ≤ rk and f (x) < f (x̂)]

(S3) x̂ has not started a local
optimization run

(S4) x̂ is at least µ from ∂D and ν
from known local minima

x̂ ∈ Lk

(L1) @x ∈ Lk

[‖x̂ − x‖ ≤ rk and f (x) < f (x̂)]

(L2) @x ∈ Sk with
[‖x̂ − x‖ ≤ rk and f (x) < f (x̂)]

(L3) x̂ has not started a local
optimization run

(L4) x̂ is at least µ from ∂D and ν
from known local minima

(L5) x̂ is not in an active local
optimization run and has not
been ruled stationary

(L6) ∃rk -descent path in Hk from
some x ∈ Sk satisfying (S2-S4)
to x̂

10 of 26.

POSMM
MLSL: (S2)–(S4) POSMM: (S1)–(S4), (L1)–(L6)

x̂ ∈ Sk

(S1) @x ∈ Lk with
[‖x̂ − x‖ ≤ rk and f (x) < f (x̂)]

(S2) @x ∈ Sk with
[‖x̂ − x‖ ≤ rk and f (x) < f (x̂)]

(S3) x̂ has not started a local
optimization run

(S4) x̂ is at least µ from ∂D and ν
from known local minima

x̂ ∈ Lk

(L1) @x ∈ Lk

[‖x̂ − x‖ ≤ rk and f (x) < f (x̂)]

(L2) @x ∈ Sk with
[‖x̂ − x‖ ≤ rk and f (x) < f (x̂)]

(L3) x̂ has not started a local
optimization run

(L4) x̂ is at least µ from ∂D and ν
from known local minima

(L5) x̂ is not in an active local
optimization run and has not
been ruled stationary

(L6) ∃rk -descent path in Hk from
some x ∈ Sk satisfying (S2-S4)
to x̂

10 of 26.

POSMM

Iteration: 0; r_k: Inf

11 of 26.

POSMM

Iteration: 1; r_k: 0.743

11 of 26.

POSMM

Iteration: 2; r_k: 0.743

11 of 26.

POSMM

Iteration: 3; r_k: 0.689

11 of 26.

POSMM

Iteration: 4; r_k: 0.643

11 of 26.

POSMM

Iteration: 5; r_k: 0.605

11 of 26.

POSMM

Iteration: 6; r_k: 0.605

11 of 26.

POSMM

Iteration: 7; r_k: 0.605

11 of 26.

POSMM

Iteration: 8; r_k: 0.605

11 of 26.

POSMM

Iteration: 9; r_k: 0.605

11 of 26.

POSMM

Iteration: 10; r_k: 0.605

11 of 26.

POSMM

Iteration: 35; r_k: 0.605

11 of 26.

POSMM

Iteration: 36; r_k: 0.605

11 of 26.

POSMM

Iteration: 37; r_k: 0.589

11 of 26.

POSMM

Iteration: 38; r_k: 0.574

11 of 26.

POSMM

Iteration: 39; r_k: 0.560

11 of 26.

POSMM

Iteration: 40; r_k: 0.548

11 of 26.

POSMM

Iteration: 41; r_k: 0.536

11 of 26.

POSMM

Iteration: 42; r_k: 0.525

11 of 26.

POSMM

Iteration: 43; r_k: 0.515

11 of 26.

POSMM

Iteration: 44; r_k: 0.497

11 of 26.

POSMM

Iteration: 45; r_k: 0.480

11 of 26.

POSMM

Iteration: 80; r_k: 0.281

11 of 26.

POSMM

Iteration: 81; r_k: 0.279

11 of 26.

POSMM

Iteration: 82; r_k: 0.276

11 of 26.

POSMM

Iteration: 83; r_k: 0.274

11 of 26.

POSMM

Iteration: 84; r_k: 0.272

11 of 26.

POSMM

Iteration: 85; r_k: 0.270

11 of 26.

POSMM

Iteration: 86; r_k: 0.268

11 of 26.

POSMM

Iteration: 87; r_k: 0.266

11 of 26.

POSMM

Iteration: 88; r_k: 0.264

11 of 26.

POSMM

Iteration: 89; r_k: 0.263

11 of 26.

POSMM

Iteration: 90; r_k: 0.262

11 of 26.

POSMM

Iteration: 91; r_k: 0.261

11 of 26.

POSMM

Iteration: 92; r_k: 0.260

11 of 26.

POSMM

Iteration: 93; r_k: 0.259

11 of 26.

POSMM

Iteration: 94; r_k: 0.258

11 of 26.

POSMM

Iteration: 95; r_k: 0.257

11 of 26.

POSMM

Iteration: 96; r_k: 0.256

11 of 26.

POSMM

Iteration: 97; r_k: 0.255

11 of 26.

POSMM

Iteration: 98; r_k: 0.255

11 of 26.

POSMM

Iteration: 99; r_k: 0.254

11 of 26.

Properties of the local optimization method

Necessary:
I Honors a starting point
I Honors bound constraints

ORBIT satisfies these [Wild, Regis, Shoemaker, SIAM-JOSC, 2008]

BOBYQA satisfies these [Powell, 2009]

Possibly beneficial:
I Can return multiple points of interest
I Reports solution quality/confidence at every iteration
I Can avoid certain regions in the domain
I Uses a history of past evaluations of f
I Uses additional points mid-run

12 of 26.

Properties of the local optimization method

Necessary:
I Honors a starting point
I Honors bound constraints

ORBIT satisfies these [Wild, Regis, Shoemaker, SIAM-JOSC, 2008]

BOBYQA satisfies these [Powell, 2009]

Possibly beneficial:
I Can return multiple points of interest
I Reports solution quality/confidence at every iteration
I Can avoid certain regions in the domain
I Uses a history of past evaluations of f
I Uses additional points mid-run

12 of 26.

Properties of the local optimization method

Necessary:
I Honors a starting point
I Honors bound constraints

ORBIT satisfies these [Wild, Regis, Shoemaker, SIAM-JOSC, 2008]

BOBYQA satisfies these [Powell, 2009]

Possibly beneficial:
I Can return multiple points of interest
I Reports solution quality/confidence at every iteration
I Can avoid certain regions in the domain
I Uses a history of past evaluations of f
I Uses additional points mid-run

12 of 26.

APOSSM Theory

Theorem
Given the same assumptions as MLSL, APOSSM will start a finite
number of local optimization runs with probability 1.

Assumption

There exists K0 <∞ so that for any K0 consecutive iterations, there is
a positive (bounded away from zero) probability of evaluating a point
from the sample stream and each existing local optimization run.

Theorem
Each x∗ ∈ X ∗ will almost surely be either identified in a finite number of
evaluations or have a single local optimization run that is converging
asymptotically to it.

13 of 26.

APOSSM Theory

Theorem
Given the same assumptions as MLSL, APOSSM will start a finite
number of local optimization runs with probability 1.

Assumption

There exists K0 <∞ so that for any K0 consecutive iterations, there is
a positive (bounded away from zero) probability of evaluating a point
from the sample stream and each existing local optimization run.

Theorem
Each x∗ ∈ X ∗ will almost surely be either identified in a finite number of
evaluations or have a single local optimization run that is converging
asymptotically to it.

13 of 26.

APOSSM Theory

Theorem
Given the same assumptions as MLSL, APOSSM will start a finite
number of local optimization runs with probability 1.

Assumption

There exists K0 <∞ so that for any K0 consecutive iterations, there is
a positive (bounded away from zero) probability of evaluating a point
from the sample stream and each existing local optimization run.

Theorem
Each x∗ ∈ X ∗ will almost surely be either identified in a finite number of
evaluations or have a single local optimization run that is converging
asymptotically to it.

13 of 26.

Measuring Performance

GLODS Global & local optimization using direct search [Custódio, Madeira

(JOGO, 2014)]

Direct Serial DIRECT [D. Finkel’s MATLAB code]

pVTDirect Parallel DIRECT [He, Watson, Sosonkina (TOMS, 2009)]

Random Uniform sampling over domain (as a baseline)

POSMM
I Local optimization method

I ORBIT [Wild, Regis, & Shoemaker (SIAM JOSC, 2008)]
I BOBYQA [Powell, 2009]

I Initial sample size: 10n

I Each method evaluates Direct’s 2n + 1 initial points.

14 of 26.

History

Check hist

Queue

DWTR

Random
Stream

MANAGERWORKERS CUSTODIANS

...
...

A

A

f (x ′)

x ′

f (x ′)

x ′

f (x ′)

x ′

(A)POSMM Diagram

(A)POSMM Manager
Algorithm 3: Manager Logic

while k < fevalmax do
MPI.recv(MPI.ANY_SOURCE)
if Received from Custodian then

Check Hk

Add new point to QL

if Received from Worker then
Update Hk

Possibly get a Custodian working on the next point
Run decide_where_to_start
Possibly update QL

if sync=False OR All Workers/Custodians are done then
Give from QL or RS to available worker(s)

16 of 26.

POSMM
MLSL: (S2)–(S4) POSMM: (S1)–(S4), (L1)–(L6)

x̂ ∈ Sk

(S1) @x ∈ Lk with
[‖x̂ − x‖ ≤ rk and f (x) < f (x̂)]

(S2) @x ∈ Sk with
[‖x̂ − x‖ ≤ rk and f (x) < f (x̂)]

(S3) x̂ has not started a local
optimization run

(S4) x̂ is at least µ from ∂D and ν
from known local minima

x̂ ∈ Lk

(L1) @x ∈ Lk

[‖x̂ − x‖ ≤ rk and f (x) < f (x̂)]

(L2) @x ∈ Sk with
[‖x̂ − x‖ ≤ rk and f (x) < f (x̂)]

(L3) x̂ has not started a local
optimization run

(L4) x̂ is at least µ from ∂D and ν
from known local minima

(L5) x̂ is not in an active local
optimization run and has not
been ruled stationary

(L6) ∃rk -descent path in Hk from
some x ∈ Sk satisfying (S2-S4)
to x̂

17 of 26.

Measuring Performance

Notation:

Let X ∗ be the set of all local minima of f .
Let f ∗(i) be the ith smallest value {f (x∗)|x∗ ∈ X ∗}.
Let x∗(i) be the element of X ∗ corresponding to the value f ∗(i).

The global minimum has been found at a level τ > 0 at batch k if an
algorithm it has found a point x̂ satisfying:

f (x̂)− f ∗(1) ≤ (1− τ)
(
f (x0)− f ∗(1)

)
,

where x0 is the starting point for problem p.

18 of 26.

Measuring Performance

Notation:

Let X ∗ be the set of all local minima of f .
Let f ∗(i) be the ith smallest value {f (x∗)|x∗ ∈ X ∗}.
Let x∗(i) be the element of X ∗ corresponding to the value f ∗(i).

The j best local minima have been found at a level τ > 0 at batch k if:∣∣∣{x∗(1), . . . , x
∗
(j−1)

}⋂{
x∗(i) : ∃x ∈ Hk with

∥∥∥x − x∗(i)

∥∥∥ ≤ rn(τ)
}∣∣∣ = j − 1

&∣∣∣{x∗(j), . . . , x
∗
(̄j)

}⋂{
x∗(i) : ∃x ∈ Hk with

∥∥∥x − x∗(i)

∥∥∥ ≤ rn(τ)
}∣∣∣ ≥ j − j + 1,

where j and j̄ are the smallest and largest integers such that

f ∗
(̄j) = f ∗(j) = f ∗(j) and where rn(τ) =

n
√

τ vol(D)Γ(n
2 +1)

πn/2 .

18 of 26.

Problems considered
GKLS problem generator [Gaviano et al., “Algorithm 829” (TOMS, 2003)]

I 600 synthetic problems with known local minima

I n = 2, . . . , 7

I 10 local minima in the unit cube with a unique global minimum

I 100 problems for each dimension

I 5 replications (different seeds) for each problem

I 5000 evaluations

19 of 26.

Data Profiles
f (x)− f ∗(1) ≤ (1− 10−5)

(
f (x0)− f ∗(1)

)

1 2 4 8 16 32 64 128 256 512
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α

)

POSMM 4 workers
Random Sampling
pVTdirect 4 workers
Direct (serial)
GLODS (serial)
Direct (idealized)

20 of 26.

Data Profiles
Within n

√
10−4Γ(n

2 +1)

πn/2 of 3 best minima

1 2 4 8 16 32 64 128 256 512 1024
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α

)

POSMM 4 workers
Random Sampling
pVTdirect 4 workers
Direct (serial)
GLODS (serial)
Direct (idealized)

20 of 26.

Data Profiles
Within n

√
10−3Γ(n

2 +1)

πn/2 of 7 best minima

1 2 4 8 16 32 64 128 256 512 1024
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α

)

POSMM 4 workers
Random Sampling
pVTdirect 4 workers
Direct (serial)
GLODS (serial)
Direct (idealized)

20 of 26.

Data Profiles (increasing workers)
Within n

√
10−3Γ(n

2 +1)

πn/2 of 7 best minima

1 2 4 8 16 32 64 128 256 512
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α
)

2 workers, BOBYQA
4 workers, BOBYQA
8 workers, BOBYQA

21 of 26.

Data Profiles (increasing workers)
Within n

√
10−3Γ(n

2 +1)

πn/2 of 7 best minima

1 2 4 8 16 32 64 128 256
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α
)

2 workers, BOBYQA (idealized)
4 workers, BOBYQA (idealized)
8 workers, BOBYQA

21 of 26.

Data Profiles (increasing workers)
Within n

√
10−4Γ(n

2 +1)

πn/2 of 3 best minima

1 2 4 8 16 32 64 128 256 512 1024
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α
)

2 workers, BOBYQA
4 workers, BOBYQA
8 workers, BOBYQA

21 of 26.

Data Profiles (increasing workers)
Within n

√
10−4Γ(n

2 +1)

πn/2 of 3 best minima

1 2 4 8 16 32 64 128 256
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α
)

2 workers, BOBYQA (idealized)
4 workers, BOBYQA (idealized)
8 workers, BOBYQA

21 of 26.

Data Profiles (increasing workers)
Within n

√
10−4Γ(n

2 +1)

πn/2 of 3 best minima

1 2 4 8 16 32 64 128 256 512 1024
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α

)

POSMM 4 workers
Random Sampling
pVTdirect 4 workers
Direct (serial)
GLODS (serial)
Direct (idealized)

21 of 26.

Data Profiles (increasing workers)
f (x)− f ∗(1) ≤ (1− 10−5)

(
f (x0)− f ∗(1)

)

1 2 4 8 16 32 64 128
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α
)

2 workers, BOBYQA
4 workers, BOBYQA
8 workers, BOBYQA

21 of 26.

Data Profiles (increasing workers)
f (x)− f ∗(1) ≤ (1− 10−5)

(
f (x0)− f ∗(1)

)

1 2 4 8 16 32 64
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α
)

2 workers, BOBYQA (idealized)
4 workers, BOBYQA (idealized)
8 workers, BOBYQA

21 of 26.

Data Profiles (vs random)
Within n

√
10−1Γ(n

2 +1)

πn/2 of 10 best minima

200 400 600 800 1000 1200 1400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α

)

RandSamp
W=2, P=0, sync=True

22 of 26.

Data Profiles (vs random)
Within n

√
10−2Γ(n

2 +1)

πn/2 of 10 best minima

200 400 600 800 1000 1200 1400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α

)

RandSamp
W=2, P=0, sync=True

22 of 26.

Data Profiles (vs random)
Within n

√
10−3Γ(n

2 +1)

πn/2 of 5 best minima

200 400 600 800 1000 1200 1400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α

)

RandSamp
W=2, P=0, sync=True

22 of 26.

Data Profiles (vs random)
Within n

√
10−6Γ(n

2 +1)

πn/2 of best minimum

200 400 600 800 1000 1200 1400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α

)

RandSamp
W=2, P=0, sync=True

22 of 26.

Data Profiles (vs random)

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

1

2

3

4

5

6

7

8

9

10

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

22 of 26.

Data Profiles (forcing runs)
f (x)− f ∗(1) ≤ (1− 10−5)

(
f (x0)− f ∗(1)

)

200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α

)

W=8, sync=True, F=0
W=8, sync=True, F=1
W=8, sync=True, F=2
W=8, sync=True, F=4
W=8, sync=True, F=8

23 of 26.

Data Profiles (forcing runs)
Within n

√
10−4Γ(n

2 +1)

πn/2 of 3 best minima

200 400 600 800 1000 1200 1400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α

)

W=8, sync=True, F=0
W=8, sync=True, F=1
W=8, sync=True, F=2
W=8, sync=True, F=4
W=8, sync=True, F=8

23 of 26.

Closing Remarks

I Concurrent function evaluations can locate multiple minima while
efficiently finding a global minimum.

I The ability to find many minima scales well with the number of
workers.

Questions:
I Finding (or designing) the best local solver for our framework?
I Best way to process the queue?

24 of 26.

Closing Remarks

I Concurrent function evaluations can locate multiple minima while
efficiently finding a global minimum.

I The ability to find many minima scales well with the number of
workers.

Questions:
I Finding (or designing) the best local solver for our framework?
I Best way to process the queue?

24 of 26.

(A)POSMM Manager

Algorithm 3: Manager Logic

while k < fevalmax do
MPI.recv(MPI.ANY_SOURCE)
if Received from Custodian then

Check Hk

Add new point to QL

if Received from Worker then
Update Hk

Possibly get a Custodian working on the next point
Run decide_where_to_start
Possibly update QL

if sync=False OR All Workers/Custodians are done then
Give from QL or RS to available worker(s)

25 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 0; r_k: Inf

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 1; r_k: 0.763

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 2; r_k: 0.689

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 3; r_k: 0.623

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 4; r_k: 0.574

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 5; r_k: 0.574

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 6; r_k: 0.574

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 7; r_k: 0.574

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 8; r_k: 0.574

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 9; r_k: 0.574

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 10; r_k: 0.574

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 11; r_k: 0.574

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 12; r_k: 0.574

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 13; r_k: 0.574

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 14; r_k: 0.574

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 15; r_k: 0.574

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 16; r_k: 0.574

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 17; r_k: 0.574

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 18; r_k: 0.574

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 19; r_k: 0.574

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 20; r_k: 0.574

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 21; r_k: 0.574

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 22; r_k: 0.574

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 23; r_k: 0.574

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 24; r_k: 0.574

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 25; r_k: 0.560

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 26; r_k: 0.548

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 27; r_k: 0.536

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 28; r_k: 0.525

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 29; r_k: 0.515

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 30; r_k: 0.506

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 31; r_k: 0.497

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 32; r_k: 0.488

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 33; r_k: 0.480

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 34; r_k: 0.473

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 35; r_k: 0.466

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 36; r_k: 0.459

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 37; r_k: 0.453

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 38; r_k: 0.435

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 39; r_k: 0.420

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 40; r_k: 0.406

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 41; r_k: 0.394

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 42; r_k: 0.383

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 43; r_k: 0.373

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 44; r_k: 0.364

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 45; r_k: 0.356

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 46; r_k: 0.348

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 47; r_k: 0.341

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 48; r_k: 0.334

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 49; r_k: 0.328

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 50; r_k: 0.322

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 51; r_k: 0.316

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 52; r_k: 0.311

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 53; r_k: 0.306

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 54; r_k: 0.301

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 55; r_k: 0.297

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 56; r_k: 0.292

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 57; r_k: 0.288

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 58; r_k: 0.285

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 59; r_k: 0.281

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 60; r_k: 0.277

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 61; r_k: 0.274

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 62; r_k: 0.271

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 63; r_k: 0.268

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 64; r_k: 0.265

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 65; r_k: 0.262

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 66; r_k: 0.259

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 67; r_k: 0.256

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 68; r_k: 0.255

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 69; r_k: 0.253

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 70; r_k: 0.251

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 71; r_k: 0.250

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 72; r_k: 0.248

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 73; r_k: 0.246

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 74; r_k: 0.245

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

Pausing runs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 75; r_k: 0.243

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

26 of 26.

